29 research outputs found

    Heart rate responses to autonomic challenges in obstructive sleep apnea.

    Get PDF
    Obstructive sleep apnea (OSA) is accompanied by structural alterations and dysfunction in central autonomic regulatory regions, which may impair dynamic and static cardiovascular regulation, and contribute to other syndrome pathologies. Characterizing cardiovascular responses to autonomic challenges may provide insights into central nervous system impairments, including contributions by sex, since structural alterations are enhanced in OSA females over males. The objective was to assess heart rate responses in OSA versus healthy control subjects to autonomic challenges, and, separately, characterize female and male patterns. We studied 94 subjects, including 37 newly-diagnosed, untreated OSA patients (6 female, age mean ± std: 52.1 ± 8.1 years; 31 male aged 54.3 ± 8.4 years), and 57 healthy control subjects (20 female, 50.5 ± 8.1 years; 37 male, 45.6 ± 9.2 years). We measured instantaneous heart rate with pulse oximetry during cold pressor, hand grip, and Valsalva maneuver challenges. All challenges elicited significant heart rate differences between OSA and control groups during and after challenges (repeated measures ANOVA, p<0.05). In post-hoc analyses, OSA females showed greater impairments than OSA males, which included: for cold pressor, lower initial increase (OSA vs. control: 9.5 vs. 7.3 bpm in females, 7.6 vs. 3.7 bpm in males), OSA delay to initial peak (2.5 s females/0.9 s males), slower mid-challenge rate-of-increase (OSA vs. control: -0.11 vs. 0.09 bpm/s in females, 0.03 vs. 0.06 bpm/s in males); for hand grip, lower initial peak (OSA vs. control: 2.6 vs. 4.6 bpm in females, 5.3 vs. 6.0 bpm in males); for Valsalva maneuver, lower Valsalva ratio (OSA vs. control: 1.14 vs. 1.30 in females, 1.29 vs. 1.34 in males), and OSA delay during phase II (0.68 s females/1.31 s males). Heart rate responses showed lower amplitude, delayed onset, and slower rate changes in OSA patients over healthy controls, and impairments may be more pronounced in females. The dysfunctions may reflect central injury in the syndrome, and suggest autonomic deficiencies that may contribute to further tissue and functional pathologies

    Brain putamen volume changes in newly-diagnosed patients with obstructive sleep apnea.

    Get PDF
    Obstructive sleep apnea (OSA) is accompanied by cognitive, motor, autonomic, learning, and affective abnormalities. The putamen serves several of these functions, especially motor and autonomic behaviors, but whether global and specific sub-regions of that structure are damaged is unclear. We assessed global and regional putamen volumes in 43 recently-diagnosed, treatment-naïve OSA (age, 46.4 ± 8.8 years; 31 male) and 61 control subjects (47.6 ± 8.8 years; 39 male) using high-resolution T1-weighted images collected with a 3.0-Tesla MRI scanner. Global putamen volumes were calculated, and group differences evaluated with independent samples t-tests, as well as with analysis of covariance (covariates; age, gender, and total intracranial volume). Regional differences between groups were visualized with 3D surface morphometry-based group ratio maps. OSA subjects showed significantly higher global putamen volumes, relative to controls. Regional analyses showed putamen areas with increased and decreased tissue volumes in OSA relative to control subjects, including increases in caudal, mid-dorsal, mid-ventral portions, and ventral regions, while areas with decreased volumes appeared in rostral, mid-dorsal, medial-caudal, and mid-ventral sites. Global putamen volumes were significantly higher in the OSA subjects, but local sites showed both higher and lower volumes. The appearance of localized volume alterations points to differential hypoxic or perfusion action on glia and other tissues within the structure, and may reflect a stage in progression of injury in these newly-diagnosed patients toward the overall volume loss found in patients with chronic OSA. The regional changes may underlie some of the specific deficits in motor, autonomic, and neuropsychologic functions in OSA

    Disrupted functional brain network organization in patients with obstructive sleep apnea.

    Get PDF
    IntroductionObstructive sleep apnea (OSA) subjects show impaired autonomic, affective, executive, sensorimotor, and cognitive functions. Brain injury in OSA subjects appears in multiple sites regulating these functions, but the integrity of functional networks within the regulatory sites remains unclear. Our aim was to examine the functional interactions and the complex network organization of these interactions across the whole brain in OSA, using regional functional connectivity (FC) and brain network topological properties.MethodsWe collected resting-state functional magnetic resonance imaging (MRI) data, using a 3.0-Tesla MRI scanner, from 69 newly diagnosed, treatment-naïve, moderate-to-severe OSA (age, 48.3 ± 9.2 years; body mass index, 31 ± 6.2 kg/m(2); apnea-hypopnea index (AHI), 35.6 ± 23.3 events/h) and 82 control subjects (47.6 ± 9.1 years; body mass index, 25.1 ± 3.5 kg/m(2)). Data were analyzed to examine FC in OSA over controls as interregional correlations and brain network topological properties.ResultsObstructive sleep apnea subjects showed significantly altered FC in the cerebellar, frontal, parietal, temporal, occipital, limbic, and basal ganglia regions (FDR, P < 0.05). Entire functional brain networks in OSA subjects showed significantly less efficient integration, and their regional topological properties of functional integration and specialization characteristics also showed declined trends in areas showing altered FC, an outcome which would interfere with brain network organization (P < 0.05; 10,000 permutations). Brain sites with abnormal topological properties in OSA showed significant relationships with AHI scores.ConclusionsOur findings suggest that the dysfunction extends to resting conditions, and the altered FC and impaired network organization may underlie the impaired responses in autonomic, cognitive, and sensorimotor functions. The outcomes likely result from the prominent structural changes in both axons and nuclear structures, which occur in the condition

    Epiglottis cross-sectional area and oropharyngeal airway length in male and female obstructive sleep apnea patients.

    Get PDF
    IntroductionObstructive sleep apnea (OSA) is a male-predominant condition, characterized by repeated upper-airway collapse with continued diaphragmatic efforts during sleep, and is accompanied by severe physiological consequences. Multiple morphological aspects, including epiglottis cross-sectional area (CSA) and oropharyngeal airway length (OPAL), can contribute to airway collapsibility in the condition. This study focused on the effects of OSA severity, sex, and race on OPA dimensions.Materials and methodsTwo high-resolution T1-weighted image series were collected from 40 mild-to-severe OSA subjects (age 46.9±9 years, body mass index 30.4±5.4 kg/m2, Apnea-Hypopnea Index score 32.8±22.5, 28 males) and 54 control subjects (47±9 years, 24.7±3.8 kg/m2, 32 males) using a 3 T magnetic resonance-imaging scanner. Caucasian, Asian, African-American, and "other" subjects constituted the study pool. Both image series were realigned and averaged, and reoriented to a common space. CSA and OPAL were measured, normalized for subject height, and compared between sexes and disease-severity levels in OSA and control subjects.ResultsSignificantly reduced epiglottis CSA appeared only in severe OSA vs controls (P=0.009). OPAL increased significantly with OSA severity vs controls (mild, P=0.027; moderate, P<0.001; severe, P<0.001). OSA males showed increased CSA and greater OPAL than OSA females, which may underlie the increased proportion of affected males with higher apnea-hypopnea index scores. However, no significant differences appeared between CSA and OPAL measures for male and female controls, suggesting that airway morphology may not be the sole contributor for airway collapse. No ethnic or racial differences appeared for CSA or OPAL measures.ConclusionSex-based reductions in epiglottis CSA and increased OPAL in OSA subjects may enhance airway-collapse vulnerability, more so with greater disease severity, and partially underlie male vs female susceptibility to the sleep disorder

    Heart rate responses to autonomic challenges in obstructive sleep apnea.

    Get PDF
    Obstructive sleep apnea (OSA) is accompanied by structural alterations and dysfunction in central autonomic regulatory regions, which may impair dynamic and static cardiovascular regulation, and contribute to other syndrome pathologies. Characterizing cardiovascular responses to autonomic challenges may provide insights into central nervous system impairments, including contributions by sex, since structural alterations are enhanced in OSA females over males. The objective was to assess heart rate responses in OSA versus healthy control subjects to autonomic challenges, and, separately, characterize female and male patterns. We studied 94 subjects, including 37 newly-diagnosed, untreated OSA patients (6 female, age mean ± std: 52.1 ± 8.1 years; 31 male aged 54.3 ± 8.4 years), and 57 healthy control subjects (20 female, 50.5 ± 8.1 years; 37 male, 45.6 ± 9.2 years). We measured instantaneous heart rate with pulse oximetry during cold pressor, hand grip, and Valsalva maneuver challenges. All challenges elicited significant heart rate differences between OSA and control groups during and after challenges (repeated measures ANOVA, p<0.05). In post-hoc analyses, OSA females showed greater impairments than OSA males, which included: for cold pressor, lower initial increase (OSA vs. control: 9.5 vs. 7.3 bpm in females, 7.6 vs. 3.7 bpm in males), OSA delay to initial peak (2.5 s females/0.9 s males), slower mid-challenge rate-of-increase (OSA vs. control: -0.11 vs. 0.09 bpm/s in females, 0.03 vs. 0.06 bpm/s in males); for hand grip, lower initial peak (OSA vs. control: 2.6 vs. 4.6 bpm in females, 5.3 vs. 6.0 bpm in males); for Valsalva maneuver, lower Valsalva ratio (OSA vs. control: 1.14 vs. 1.30 in females, 1.29 vs. 1.34 in males), and OSA delay during phase II (0.68 s females/1.31 s males). Heart rate responses showed lower amplitude, delayed onset, and slower rate changes in OSA patients over healthy controls, and impairments may be more pronounced in females. The dysfunctions may reflect central injury in the syndrome, and suggest autonomic deficiencies that may contribute to further tissue and functional pathologies

    Subject information across subgroups, with means and standard deviations (±std). Group effects were evaluated with parametric and Kruskal-Wallis ANOVA tests (four-group for age, BMI and psychological measures, and two-group for OSA parameters).

    No full text
    <p>Subject information across subgroups, with means and standard deviations (±std). Group effects were evaluated with parametric and Kruskal-Wallis ANOVA tests (four-group for age, BMI and psychological measures, and two-group for OSA parameters).</p

    Hand grip heart rate responses.

    No full text
    <p>A: 37 OSA and 57 control subjects; B: 6 OSA and 20 control female subjects, and 31 OSA and 37 control male subjects. Aii, Bii: Raw heart rate during the complete sequence. Aii, Bii, Biii: Change in heart rate relative to baseline (group mean ± SE) averaged over 4 challenges, with time-points of significant increase or decrease relative to baseline within-group, and time-points of between-group differences (RMANOVA, <i>p</i><0.05). Gray rectangles (hg) indicate challenge periods.</p

    Indices for each challenge.

    No full text
    <p>These measures are intended to quantify visually apparent patterns of group differences in the mean signals, as seen in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076631#pone-0076631-g002" target="_blank">Figs. 2</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076631#pone-0076631-g004" target="_blank">4</a> & <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076631#pone-0076631-g006" target="_blank">6</a>. However, descriptive (SEM) and comparative (ANOVA) statistics are also presented for measures with individually calculated data (i.e., not delays, where were calculated from the mean signal only).</p
    corecore